数列{an}是等差数列,若a1+1,a3+3,a5+5构成公比为q的等比数列,求q的值和前20项的

2025-05-22 05:17:55
推荐回答(1个)
回答1:

设等差数列{an}的公差为d,
由a1+1,a3+3,a5+5构成等比数列,
得:(a3+3)2=(a1+1)(a5+5),
整理得:a32+6a3+4=a1a5+5a1+a5,
即(a1+2d)2+6(a1+2d)+4=a1(a1+4d)+5a1+a1+4d.
化简得:(d+1)2=0,即d=-1.
∴q=a3+3/a1+1 =a1+2d+3 /a1+1 =a1+1 /a1+1 =1