(Ⅰ)证明:设FG∩AC=H,连结EH,
在Rt△ABC中,AB=BC,且AB2+BC2=AC2,
在△PAC中,PA=PC=AB,
PA2+PC2=AC2,∴AP⊥PC,
E、F、G分别是PO、AD、AB的中点,
FG∥BD,
∴H为AO中点,
∴EH∥PA,故EH⊥PC,
∵四边形ABCD是正方形,∴BD⊥AC,
∴FG⊥AC,
∵PO⊥平面ABCD,∴PO⊥FG
∵PO∩AC=O,∴FG⊥平面PAC,
∴FG⊥PC,
∵FG∩EH=H,
∴PC⊥平面EFG;
(Ⅱ)解:设三棱锥O-EFG的高为h,则
由VO-EFG=VE-FOG得
×1 3
×1 2
×
2
2
h=1 2
×1 3
×1 2
×
2
2
×
2
4
1 3
∴h=
.1 4