y=[x(x+3)][(x+1)(x+2)]
=[(x+3/2)²-(9/4)][(x+3/2)²-(1/4)]
设t=(x+3/2)² 则t≥0
y=(t-(9/4))(t-(1/4))
=(t-5/4)²-1
得 当t-5/4=(x+3/2)²-5/4=0 即x=(-3± √5)/2时
y取最小值-1
所以 y最小=-1
希望能帮到你!
解:
y=x(x+1)(x+2)(x+3)
=[x(x+3)][(x+1)(x+2)]
=(x²+3x)(x²+3x+2)
=(x²+3x)²+2(x²+3x)
=(x²+3x)²+2(x²+3x)+1-1
=(x²+3x+1)²-1
=[(x+ 3/2)² -5/4]² -1
平方项恒非负,(x+ 3/2)²≥0
(x+ 3/2)² -5/4≥-5/4
[(x+ 3/2)² -5/4]²≥0
[(x+ 3/2)² -5/4]²-1≥-1
(x²+3x+1)²-1≥-1
y≥-1
函数的最小值为-1。
这么简单都不会?
y=[x(x+3)]*[(x+1)(x+2)]
=[(x^2+3x+1)-1]*[(x^2+3x+1)+1] 一看就是平方差公式
=(x^2+3x+1)^2-1
>=0-1