(1)在等差数列{an}中,设其公差为d,由a1=12,a10=30,得d= a10?a1 10?1 = 30?12 9 =2.∴an=a1+(n-1)d=12+2(n-1)=2n+10;(2)由Sn=na1+ n(n?1)d 2 =12n+ 2n(n?1) 2 =n2+11n=242,得n2+11n-242=0,解得:n=-22(舍)或n=11.∴n的值为11.