等差数列{an}的前n项和记为Sn,已知a1=12,a10=30.(1)求通项an; (2)若Sn=242,求n的值

2025-05-14 15:03:25
推荐回答(1个)
回答1:

(1)在等差数列{an}中,设其公差为d,由a1=12,a10=30,得
d=

a10?a1
10?1
30?12
9
=2.
∴an=a1+(n-1)d=12+2(n-1)=2n+10;
(2)由Sn=na1+
n(n?1)d
2
=12n+
2n(n?1)
2
=n2+11n=242,
得n2+11n-242=0,
解得:n=-22(舍)或n=11.
∴n的值为11.