关于有理数集和无理数集的疑惑

2025-05-22 00:11:00
推荐回答(1个)
回答1:

全体有理数构成一个集合,即有理数集,用粗体字母Q表示,较现代的一些数学书则用空心字母Q表示。
有理数集是实数集的子集。相关的内容见数系的扩张。
编辑本段表示的由来
由于两个数相比的结果(商)叫做有理数,商英文是quotient,所以就用Q了
编辑本段分析
有理数集是一个域,即在其中可进行四则运算(0作除数除外),而且对于这些运算,以下的运算律成立(a、b、c等都表示任意的有理数):
①加法的交换律
a+b=b+a;
②加法的结合律
a+(b+c)=(a+b)+c;
③存在数0,使
0+a=a+0=a;
④对任意有理数a,存在一个加法逆元,记作-a,使a+(-a)=(-a)+a=0;
⑤乘法的交换律
ab=ba;
⑥乘法的结合律
a(bc)=(ab)c;
⑦分配律
a(b+c)=ab+ac;
⑧存在乘法的单位元1≠0,使得对任意有理数a,1a=a;
⑨对于不为0的有理数a,存在乘法逆元1/a,使a(1/a)=(1/a)a=1。
⑩0a=0
文字解释:一个数乘0还于0。
此外,有理数是一个序域,即在其上存在一个次序关系≤。