(1)设等差数列{an}的公差为d,
由S4+a2=2S3,得4a1+6d+a1+d=6a1+6d,
∴a1=d,…(2分)
则an=a1+(n-1)d=na1,
∴b1=a2=2a1,b2=a4=4a1,
等比数列{bn}中q=
=2,…(3分)b2 b1
则bn=2a1?2n-1=2n?a1,…(4分)
当a1=2时,bn=2n+1,cn=
=2(2 (n+1)(n+2)
?1 n+1
)…(6分)1 n+2
则Tn=c1+c2+…+cn=2(
?1 2
+1 3
?1 3
+…+1 4
?1 n+1
)1 n+2
=2(
?1 2
)=1 n+2
…(8分)n n+2?
(2)f(n)=log3Tn=log3
n n+2?
∴f(1)+f(2)+…+f(n)
=log3
+log31 3
+…+log32 4
n n+2
=log3(
?1 3
?…?2 4
)=log3n n+2
≤log32 (n+1)(n+2)
=-12 (1+1)(1+2)
即f(1)+f(2)+…+f(n)的最大值为-1.…(12分)