已知m2+2mn+2n2-6n+9=0,求mn2的值.解:∵m2+2mn+2n2-6n+9=0∴(m+n)2+(n-3)2=0∴(m+n)2=0,(n-3

2025-05-10 00:02:56
推荐回答(1个)
回答1:

(1)∵x2+4x+4+y2-8y+16=0
∴(x+2)2+(y-4)2=0,
∴(x+2)2=0,(y-4)2=0,
∴x=-2,y=4

y
x
=-
1
2

(2))∵a2+b2-8b-10a+41=0,
∴(a-5)2+(b-4)2=0,
∴(a-5)2=0,(b-4)2=0,
∴a=5,b=4
△ABC中最大边5<c<9;
(3))∵x2+y2-2x+2y+3=(x-1)2+(y+1)2+1,
且(x-1)2≥0,(y+1)2≥0,
∴(x-1)2+(y+1)2+1>0,
∴多项式x2+y2-2x+2y+3的值总是正数.