(1)连接EC,∵
=BE BC
=1
2
=
2
2
,∠EBC=∠BCD=90°,BC CD
∴△EBC∽△BCD,
∴∠ECB=∠BDC.
∴BD⊥CE.
又∵PC⊥BD,PC∩CE=C,
∴BD⊥平面PEC.
∴BD⊥PE.
在正△PAB中,
∵E是AB的中点,
∴PE⊥AB.
又∵AB∩BD=B,
∴PE⊥平面ABCD.
(2)∵PE⊥平面ABCD,CF⊥平面ABCD,
∴PE∥CF.
∴CF∥平面PAB.
又∵CB⊥平面PAB.
∴点F到平面PAB的距离=点C到平面PAB的距离=
.
2
设CF=t.过F作FG⊥PE于G,则PF=
.sinθ=
(
?t)2+3
3
2
(