(Ⅰ)f'(x)=(2x+m)?ex+(x2+mx+n)?ex=[x2+(m+2)x+m+n]ex,
由题意得f'(0)=0,得m+n=0,即f'(x)=[x2+(m+2)x]ex,
当m<-2时,x∈(-∞,0),(-m-2,+∞)时,f'(x)>0,函数f(x)单调递增;
当x∈(0,-m-2)时,f'(x)<0,函数f(x)单调递减;
当m>-2时,函数f(x)在(-∞,-m-2),(0,+∞)单调递增;在(-m-2,0)上单调递减,
当m=-2时,不合题意.
(2)由题意△=(m+2)2-4(m+n)≤0,即m2-4n+4≤0,
∵
lim n→0
=4,即f(x)?n x
lim x→0
=4,f(x)?f(0) x?0
f′(0)=4,
∴m+n=4,即n=4-m,
m2≤4(4-m-1),即m2+4m-12≤0,
∴m∈[-6,2],n∈[2,10]
∴A∪B=[-6,10].