这是陕西省第九次大学生高等数学竞赛复赛试题第九题

2025-05-19 05:02:39
推荐回答(1个)
回答1:

2sin[π/(4n)]·sin[π/(4n)]
=1-cos[π/(2n)]
2sin[π/(4n)]·sin[3π/(4n)]
=cos[π/(2n)]-cos[2π/(2n)]
2sin[π/(4n)]·sin[3π/(4n)]
=cos[2π/(2n)]-cos[3π/(2n)]
……
2sin[π/(4n)]·sin[(2n-1)π/(4n)]
=cos[(n-1)π/(2n)]-cos[nπ/(2n)]

全部加起来,得到
2sin[π/(4n)]·∑sin[(2k-1)π/(4n)]
=1-cos[2π/(2n)]
=1
∴∑sin[(2k-1)π/(4n)]=1/{2sin[π/(4n)]}

令t=π/(4n),则
原式=lim(t→0)π²/(16t²)·(1-t/sint)
=π²/16·lim(t→0)(sint-t)/(t²sint)
=π²/16·lim(t→0)(sint-t)/t³
=π²/16·lim(t→0)(cost-1)/(3t²)
=π²/16·(-1/6)
=-π²/96