tan(α-β)=1/2
tanβ=-1/7
tanα=tan[(α-β)+β]
=[tan(α-β)+tanβ]/[1-tan(α-β)tanβ]
=(1/2-1/7)/[1-(1/2)(-1/7)]
=(7/14-2/14)/(14/14+1/14)
=5/15
=1/3
tan(2α-β)=tan[α+(α-β)]
=[tanα+tan(α-β)]/[1-tanαtan(α-β)]
=(1/3+1/2)/[1-(1/3)(1/2)]
=(2/6+3/6)/(6/6-1/6)
=5/5
=1