解答:(Ⅰ)解:由题意得e=
=c a
,1 2
=|3c|
32+42
=3c 5
,3 5
∴c=1,a=2,
∴所求椭圆方程为
+x2 4
=1;y2 3
(Ⅱ)设过点F2(1,0)的直线l方程为:y=k(x-1),
再设点E(x1,y1),点F(x2,y2),
将直线l方程y=k(x-1)代入椭圆C:
+x2 4
=1,y2 3
整理得:(4k2+3)x2-8k2x+4k2-12=0.
∵点P在椭圆内,
∴直线l和椭圆都相交,△>0恒成立,
且x1+x2=
x1?x2=8k2
4k2+3
,4k2?12 4k2+3
直线AE的方程为:y=
(x?2),直线AF的方程为:y=y1
x1?2
(x?2).y2
x2?2
令x=3,得点M(3,
),N(3,y1
x1?2
),y2
x2?2
∴点P的坐标(3,
(1 2
+y1
x1?2
)),y2
x2?2
直线PF2的斜率为k′=
=
(1 2
+y1
x1?2
)?0y2
x2?2 3?1
(1 4
+y1
x1?2
)y2
x2?2
=
1 4
=
y2x1+x2y1?2(y1+y2)
x1x2?2(x1+x2)+4
?1 4
,2kx1x2?3k(x1+x2)+4k
x1x2?2(x1+x2)+4
将x1+x2=
,x1x2=8k2
4k2+3
代入上式,得:k′=4k2?12 4k2+3
?1 4
=?2k?
?3k?4k2?12 4k2+3
+4k8k2
4k2+3
?24k2?12 4k2+3
+48k2
4k2+3
3 4k
∴k?k'为定值?
.3 4