取对数,得
lim(x->+∞)ln(π/2-arctanx)/lnx
=lim(x->+∞)1/(π/2-arctanx) ×(-1/(1+x方))/(1/x)
=-lim(x->+∞)(1/x)/(π/2-arctanx) ·【x方/(1+x方)】( 前面的使用洛必达法则)
=-lim(x->+∞)(-1/x方)/(-1/(1+x方)) lim(x->+∞)【x方/(1+x方)】
=-lim(x->+∞)(1+x方)/x方【x方/(1+x方)】
=-1
所以
原式=e的-1次方
lim
=lim
=lim
=lim
=lim
=0.
(望采纳)