∵(a+b+c)(b+c-a)=3bc ∴[(b+c)+a][(b+c)-a]=3bc ∴(b+c) 2 -a 2 =3bc b 2 +2bc+c 2 -a 2 =3bc b 2 -bc+c 2 =a 2 根据余弦定理有a 2 =b 2 +c 2 -2bccosA ∴b 2 -bc+c 2 =a 2 =b 2 +c 2 -2bccosA bc=2bccosA cosA=
∴A=60° sinA=2sinBcosC sin(B+C)=2sinBcosC ∴sin(B-C)=0 B=C,∵A=60°,∴B=C=60° ∴△ABC是等边三角形. |