已知:如图,正方形ABCD的边长为1,动点E、F分别在边AB、对角线BD上(点E与点A、B都不重合)且AE=

2025-05-20 15:24:26
推荐回答(1个)
回答1:

(1)过F作FG⊥DC于G,
则∠FGD=∠FGC=90°
∵正方形ABCD中,BD是对角线,
∴∠BDG=45°,
∵∠FGD=90°,DF=x,
∴FG=DG=
2
2
x,
∵正方形ABCD的边长为1,
∴GC=1-
2
2
x,
在Rt△FCG中,
CF 2 =CG 2 +FG 2 =(1-
2
2
x) 2 +(
2
2
x) 2 =x 2 -
2
x+1,
∴y=x 2 -
2
x+1(0<x<
2
2
);

(2)延长GF交AB于H,
∵∠A=∠ADG=∠DGH=90°,
∴矩形AHGD,
∴AH=DG=
2
2
x,
∵AE=
2
x,
∴HE=
2
2
x,
∴GF=HE,
CG=FH,
∵∠CGF=∠FHE=90°,
∴Rt△FCG≌Rt△EFH(SAS),
∴FC=FE,

(3)∵AE=
2
DF,
∴DF<AE,
∴若存在以AE、DF、CF的长为边的直角三角形,则DF不可能为斜边,
①若CF为斜边,则x 2 +(
2
x) 2 =x 2 -
2
x+12x 2 +
2
x-1=0,
x=
-
2
+
10
4
,x=
-
2
-
10
4
(负值舍去),
②若AE为斜边,则x 2 +x 2 -
2
x+1=(
2
x) 2 ,解得:x=
2
2

∵0<x<
2
2

∴舍去
综上所述当x=
-