已知数列{an}的首项为a1=2,前n项和为Sn,且对任意的n∈N*n,≥2,an总是3Sn-4与2?52Sn?1的等差中项.(1

2025-06-23 02:56:48
推荐回答(1个)
回答1:

(1)证:n≥2时,2an=3Sn-4+2-

5
2
Sn?1,即2(Sn-Sn-1)=3Sn-4+2-
5
2
Sn?1

∴Sn=
1
2
Sn?1+2

由上得2+a2
1
2
×2+2=3?a2=1
(3分)
an+1
an
Sn+1?Sn
Sn?Sn?1
(
1
2
Sn+2)?(
1
2
Sn?1+2)
Sn?Sn?1
1
2
(n≥2),
a2
a1
1
2

∴数列{an}是公比为
1
2
等比数列
an=2×(
1
2
)n?1
1
2n?2
.(6分)
(2)证:Sn=4-(
1
2
)n?2
,要证
1
2
(log2Sn+log2Sn+2)<log2Sn+1
,只要证SnSn+2<Sn+12
SnSn+2=[4?(
1
2
)n?2][4?(
1
2
)n]=16?5(
1
2
)n?2+(
1
2
)2n?2