(1)证:n≥2时,2an=3Sn-4+2-
Sn?1,即2(Sn-Sn-1)=3Sn-4+2-5 2
Sn?15 2
∴Sn=
Sn?1+2,1 2
由上得2+a2=
×2+2=3?a2=1(3分)1 2
故
=an+1 an
=
Sn+1?Sn
Sn?Sn?1
=(
Sn+2)?(1 2
Sn?1+2)1 2
Sn?Sn?1
(n≥2),1 2
又
=a2 a1
1 2
∴数列{an}是公比为
等比数列1 2
∴an=2×(
)n?1=1 2
.(6分)1 2n?2
(2)证:Sn=4-(
)n?2,要证1 2
(log2Sn+log2Sn+2)<log2Sn+1,只要证SnSn+2<Sn+12.1 2
又SnSn+2=[4?(
)n?2][4?(1 2
)n]=16?5(1 2
)n?2+(1 2
)2n?2,
1 2