证明:∠ADE=∠1,∠CED=∠2,∠CDE=∠3∵AD‖BC∴∠1=∠2又∵∠1=∠3∴∠2=∠3∴CE=CD又∵CD=C'D∴CE=C'D又∵CE‖C'D∴四边形CEC'D是平行四边形又∵CE=CD∴四边形CEC'D是菱形解:四边形ABED是平行四边形证明:∵BC=CD+AD∴BE+CE=CD+AD又∵CE=CD∴BE=AD又∵BC‖AD∴四边形ABED是平行四边形∵∴+-×÷=∠⊥‖