如果三角形两条边的平方和等于第三边的平方,那么这个三角形就是直角三角形。
最长边所对的角为直角。勾股定理的逆定理是判断三角形是否为锐角、直角或钝角三角形的一个简单的方法。
若c为最长边,且a_+b_=c_,则△ABC是直角三角形。如果a_+b_>c_,则△ABC是锐角三角形。如果a_+b_
勾股定理的逆定理:如果三角形两条边的平方和等于第三边的平方,那么这个三角形就是直角三角形。最长边所对的角为直角。
证明过程如下:
根据余弦定理,在△ABC中,cosC=(a²+b²-c²)÷2ab。
由于a²+b²=c²,故cosC=0;
因为0°<∠C<180°,所以∠C=90°。(证明完毕)
扩展资料:
勾股定理的逆定理是判断三角形是否为锐角、直角或钝角三角形的一个简单的方法。
(1)若c为最长边,且a²+b²=c²,则△ABC是直角三角形。
(2)如果a²+b²>c²,则△ABC是锐角三角形。
(3)如果a²+b² 参考资料:百度百科-勾股定理的逆定理
勾股定理的逆定理:若一个三角形的三条边满足关系式 a²+b²=c²,则这个三角形是直角三角形.作用:判断一个三角形是不是直角三角形.
勾股定理是直角三角形的性质定理,而勾股定理的逆定理是直角三角形的判定定理,它不仅可以判定三角形是否为直角三角形,还可以判定哪一个角是直角,从而产生了证明两直线互相垂直的新方法:利用勾股定理的逆定理,通过计算来证明,体现了数形结合的思想.
三角形的三边分别为a、b、c,其中c为最大边,若a²+b²=c²,则三角形是直角三角形;若a²+b²>c²,则三角形是锐角三角形;若a²+b²<c²,则三角形是钝角三角形.所以使用勾股定理的逆定理时首先要确定三角形的最大边.
勾股定理本身是由直角三角形得到其三边满足关系:两直角边的平方和等于斜边平方;
而其逆定理是由三角形两边平方和等于第三边的平方得到三角形是直角三角形。
勾股定理的逆定理证明