解答:(1)解:由Sn+Sn-2=2Sn-1+2n-1(n≥3)得Sn-Sn-1=Sn-1-Sn-2+2n-1(n≥3),
∴an=an-1+2n-1
∴an=(an-an-1)+(an-1-an-2)+…+(a3-a2)+a2=2n-1+2n-2+…+22+5=2n+1(n≥3)
检验知n=1、2时,结论也成立,故an=2n+1;
(2)证明:∵bn=
=2n?1
an?an+1
(1 2
?1
2n+1
),1
2n+1+1
∴Tn=b1+b2+…+bn=
[(1 2
-1 3
)+(1 5
?1 5
)+…+(1 9
?1
2n+1
)]=1
2n+1+1
(1 2
?1 3
)<1
2n+1+1
1 6
(3)证明:由(2)可知Tn=
(1 2
?1 3
),1
2n+1+1
若Tn>m,则得
(1 2
?1 3
)>m,化简得1
2n+1+1
>1?6m 3
.1
2n+1+1
∵m∈(0,
),∴1-6m>0,∴2n+1>1 6
?1,∴n>log2(3 1?6m
?1)?1,3 1?6m
当log2(
?1)?1<1,即0<m<3 1?6m
时,取n0=1即可,1 15
当log2(
?1)?1≥1,即3 1?6m
≤m<1 15
时,则记log2(1 6
?1)?1的整数部分为S,取n0=S+1即可,3 1?6m
综上可知:对任意的m∈(0,
),均存在n0∈N*,使得(2)中的Tn>m成立.1 6