(2014?湖南模拟)如图:在四棱锥P-ABCD中,底面ABCD是菱形,∠ABC=60°,PA⊥平面ABCD,点M,N分别为BC

2025-05-16 16:55:32
推荐回答(1个)
回答1:

(Ⅰ)证明:∵ABCD为菱形,
∴AB=BC
又∠ABC=60°,
∴AB=BC=AC,
又M为BC中点,∴BC⊥AM
而PA⊥平面ABCD,BC?平面ABCD,∴PA⊥BC
又PA∩AM=A,∴BC⊥平面AMN
(II)∵S△AMC

1
2
AM?CM=
1
2
×
3
×1=
3
2

又PA⊥底面ABCD,PA=2,∴AN=1
∴三棱锥N-AMC的体积V=
1
3
S△AMC?AN
=
1
3
×
3
2
×1=
3
6

(III)存在点E,
取PD中点E,连接NE,EC,AE,
∵N,E分别为PA,PD中点,
NE
1
2
AD

又在菱形ABCD中,CM
1
2
AD

NE
MC
,即MCEN是平行四边形
∴NM∥EC,
又EC?平面ACE,NM?平面ACE
∴MN∥平面ACE,
即在PD上存在一点E,使得NM∥平面ACE,
此时PE=
1
2
PD=