∵△ABE是等边三角形,∴∠ABE=∠AEB=60°,BE=AB,∵四边形ABCD是正方形,∴AB=BC,∠ABC=∠BCD=90°,∴BE=BC,∠CBE=90-60°=30°,∴∠BCE=∠BEC= 1 2 (180°-30°)=75°,∴∠DCE=∠BCD-∠BCE=90°-75°=15°;由对称性可得∠AED=∠BEC=75°,∴∠BEG=180°-∠AED-∠AEB=180°-75°-60°=45°.故答案为:15°;45°.