x(1-y²)(1-z²)+y(1-x²)(1-z²)+z(1-x²)(1-y²)=x+y+z-x(y²+z²)+xy²z²-y(x²+z²)+yx²z²-z(x²+y²)+zx²y²(xy²z²,yx²z²,zx²y²中分别提取出xyz,用x+y+z代替,并重新组合各项的顺序)=xyz+(x+y+z)yz-y²z-yz²+(x+y+z)xz-x²z-xz²+(x+y+z)xy-x²y-xy²=xyz+xyz+xyz+xyz=4xyz关键是代换x+y+z=xyz