设
an=∫ sin^n xdx;(x:0~π/2)
=-(sinx)^(n-1)-(n-1)[an-a(n-2)]
=-(n-1)[an-a(n-2)]
an/a(n-2)=(n-1)/n
a2n/ao
=a2n/a(n-2)*a(n-2)/a(n-4)*……*a2/a0
=(1/2)*(3/4)*(5/6)*...*[(2n-3)/(2n-2)]*[(2n-1)/2n]
ao=π/2
得
∫0~(π/2) sin^2n xdx=(1/2)*(3/4)*(5/6)*...*[(2n-3)/(2n-2)]*[(2n-1)/2n]*π/2
将被积函数展开成无穷乘积,然后积分。或
I(2n)=∫0~(π/2) sin^2n xdx=-sin^(2n-1)xcosx|0~(π/2)+(2n-1)∫0~(π/2) sin^(2n-2) xcos^2 xdx=-(2n-1)I(2n)+(2n-1)I(2n-2),I(2n)=[(2n-1)/(2n)]I(2n-2),I(2n-2)=[(2n-3)/(2n-2)]I(2n-4),...,I(2)=(1/2)I(0),I(0)=∫0~(π/2) dx=x|[0~(π/2)]=π/2。I(2n)=[(2n-1)/(2n)][(2n-3)/(2n-2)]...(3/4)(1/2)π/2