解:∵点A(-3,0),B(0,4),
∴OA=3,OB=4,
∴AB=
OA2+OB2
=
32+42
=5,
由图可知,每三个三角形为一个循环组依次循环,
∵2012÷3=670余2,
∴△2012是第671循环组的第2个直角三角形,
∴直角顶点的横坐标为(3+4+5)×670+4+4×
4
5
=8044+
16
5
,
纵坐标为4×
3
5
=
12
5
,
∴△2012的直角顶点的坐标为(8044+
16
5
,
12
5
).
故选D.
由a(-4,0),b(0,3),根据勾股定理得ab=5,而对△aob连续作三次旋转变换回到原来的状态,并且第三个和第四个直角三角形的直角顶点的坐标是(12,0),所以第(7)个三角形的直角顶点的横坐标等于12×2=24,第(2013)个三角形的直角顶点的横坐标等于671×12=8052,即可得到它们的坐标.
解答:解:∵a(-4,0),b(0,3),
∴ab=5,
∴第三个和第四个直角三角形的直角顶点的坐标是(12,0),
∵对△aob连续作三次旋转变换回到原来的状态,
∴第(7)个三角形的直角顶点的横坐标等于12×2=24,
∴第(7)个三角形的直角顶点的坐标是
(24,0);
∴第(2013)个三角形的直角顶点的横坐标等于671×12=8052,(周期是3,2013刚刚是617次。每次在x上的距离是12。)
∴第(2013)个三角形的直角顶点坐标是(8052,0).
故答案为:(24,0),(8052,0).