∵AB=AC∴∠B=∠ACB=x,∵D,E在BC,AC延长线上∴∠ACB=∠DCE=x,∴∠E=180°-x-30°=150°-x,∵AD=AE,∴∠ADE=∠E=150°-x,∠EAD=180°-2(150°-x)∵AB=AC,∴∠BAC=180°-2x,∴∠BAD=∠BAC+∠EAD=180°-2x+180°-300°+2x=60°.