解:
由题意得
bn*bn+1=(an+1)^2
an+1-bn^2=bn^2-an
解得bn*bn+1=an+1 ①
(bn*bn+1)-bn^2=bn^2-an ②
由 ①得bn-1*bn=an 代入②得
(bn*bn+1)-bn^2=-(bn-1*bn)
∴(bn+1)-bn=bn-(bn-1)
∴{bn}是等差数列
(第二问还没想出来哩)
bn^2-an=an+1-bn^2(因为他们是等差)
bn^2=(an+an+1)/2
又有an+1/bn^2=bn+1^2/an+1
bn+1^2=2an+1^2/(an+an+1)
所以bn+-bn结果一定!{bn}是等差数列
这高一的东西??
不会