(根号(x+1))⼀(x+2) dx用第二类换元法求不定积分

2025-05-22 13:27:56
推荐回答(2个)
回答1:

∫√(x+1)/(x+2)*dx
令√(x+1)=t,则x=t²-1,dx=2tdt

原式=2∫t²dt/(t²+1)
=2∫[1-1/(t²+1)]dt
=2t-2arctant+C
=2√(x+1)-2arctan√(x+1)+C

回答2:

√(x+1)=t
∫√(x+1)/(x+2)dx= ∫t/(t²+1)dt²=2∫t²/(t²+1)dt
=2∫1-1/(t²+1)dt=2t-2arctant+C