如图,AC是圆O的直径,点B在圆O上,∠BAC=30°,BM⊥AC交AC于点M,EA⊥平面ABC,FC∥EA,AC=4,EA=3,FC=

2025-05-17 04:52:33
推荐回答(1个)
回答1:

解:(1)证明:∵EA⊥平面ABC,BM伡平面ABC,
∴EA⊥BM.
又∵BM⊥AC,EA∩AC=A,
∴BM⊥平面ACFE, 而EM伡平面ACFE,
∴BM⊥EM.
∵AC是圆O的直径,
∴∠ABC=90°.
又∵∠BAC=30°,AC=4,
,AM=3,CM=1.
∵EA⊥平面ABC,FC∥EA,
∴FC⊥平面ABCD.
∴△EAM与△FCM都是等腰直角三角形.
∴∠EMA=∠FMC=45°.
∴∠EMF=90°,
即EM⊥MF(也可由勾股定理证得).
∵MF∩BM=M,
∴EM⊥平面MBF. 而BF伡平面MBF,
∴EM⊥BF.
(2)延长EF交AC于G,连BG,过C作CH⊥BG,连接FH.
由(1)知FC⊥平面ABC,BG伡平面ABC,
∴FC⊥BG. 而FC∩CH=C,
∴BG⊥平面FCH.
∵FH伡平面FCH,
∴FH⊥BG,
∴∠FHC为平面BEF与平面ABC所成的 二面角的平面角.
在Rt△ABC中,
∵∠BAC=30°,AC=4,
.  
,得GC=2.

又∵△GCH~△GBM,
,则
∴△FCH是等腰直角三角形,∠FHC=45°.
∴平面BEF与平面ABC所成的锐二面角的余弦值为