解:f(x)-k=ax²-lnx-k=0f '(x)=2ax-1/x (x∈〔1/e,e〕)若a≤0,则f'(x)<0函数f(x)单调递减↘,不符合题意则a>0,令f'(x)=0,则x=1/√2a∴1/e<1/√2a<e,函数f(x)↘↗f(e)=ae²-1-k≥0f(1/e)=a/e²+1-k≥0f(1/√2a)=1/2+1/2ln2a-k<0解得:1/2e²<a<e²/2