已知1⼀x+1⼀(y+z)=1⼀2,1⼀y+1⼀(z+x)=1⼀3,1⼀z+1⼀(x+y)=1⼀4,则2⼀x+3⼀Y+4⼀z的值为

2025-05-18 17:25:53
推荐回答(1个)
回答1:

解:
1/x+1/(y+z)=1/2,
(x+y+z)/[x(y+z)]=1/2
即 1/x =(y+z)/[2(x+y+z)]
同样可得:
1/y=(x+z)/[3(x+y+z)]
1/z=(x+y)/[4(x+y+z)]
所以:
2/x+3/y+4/z
=(y+z)/(x+y+z)+(x+z)/(x+y+z)+(x+y)/(x+y+z)
=2(x+y+z)/(x+y+z)
=2