用体积算
VD-AEC=1/2VC-APD=1/4VP-ABCD
三角形AEC中
AE=1/2PD=根号5 AC=2根号5
PA垂直CD AD垂直CD CD垂直平面APD 所以CD垂直PD
CE^2=CD^2+DE^2=3
在三角形AEC中 作EF垂直AC 设AF=x CF=2根号5-x
EF^2=AE^2-AF^2=CE^2-CF^2
5-x^2=9-(2根号5-x)^2
x=4根号5/5 EF=3根号5/5
SAEC=1/2EF*AC=3
VD-AEC=1/4VP-ABCD
1/3h*SAEC=1/4*1/3*PA*SABCD
h*3=1/4*2*2*4
h=4/3
sina=h/CD=2/3