二次函数解析式y=(x-a)눀+1,且-2≤x≤2,求二次函数的最小值和最大值。

2025-06-23 05:03:15
推荐回答(5个)
回答1:

当a<-2时,开口向上,-2≤x≤2图象完全在对称轴x=a的右侧,是增函数
故最小值是f(-2)=a²+4a+5 最大值是f(2)=a²-4a+5
当a>2时,开口向上,-2≤x≤2图象完全在对称轴x=a的左侧,是减函数
故最小值是f(2)=a²-4a+5 最大值是f(-2)=a²+4a+5
当-2≤a≤2时,最小值为f(a)=1
这个区间内求最大值需按对称轴区间中点的左侧还是右侧进一步讨论
(1)-2≤a≤0时,最大值f(2)=a²-4a+5
(2))0

回答2:

函数开口向上,对称轴为x=a
1、当a≤-2时,函数在[-2,2]内单调递增
ymin=(2+a)²+1
ymax=(2-a)²+1
2、当-2≤a≤0时,
ymin=1
ymax=(2-a)²+1
3、当0≤a≤2时,
ymin=1
ymax=(2+a)²+1
4、当a≤-2时,函数在[-2,2]内单调递减
ymin=(2-a)²+1
ymax=(2+a)²+1

回答3:

1)a<-2 x=2,MAX=(2-a)^2+1 x=-2,MIN=(2+a)^2+1
2)-23)04)a>2 x=-2,MAX=(2+a)^2+1 x=2,MIN=(2-a)^2+1

至于等号,初中生取一端,高中生全取

回答4:

y=(x-a)²+1

回答5: