答:
(1)a=1时,f(x)=|x-1|-|x+1|
x>=-1,f(x)=1-x-(-x-1)=2
-1<=x<=1,f(x)=1-x-(x+1)=-2x<1,-1/2
综上所述,f(x)<1的解集是x>-1/2
(2)不知道理解对不对:f(x)>=-4
f(x)=|x-1|-|x+a|>=-4
a<=-1时:x<=1,f(x)=1-x-(-x-a)=1+a>=-4,a>=-5与a<=-1矛盾,假设不成立。
a>=-1时:
x<=-a<=1,f(x)=1-x-(-x-a)=a+1>=-4,a>=-5符合a>=-1;
-a<=x<=1,f(x)=1-x-(x+a)=-2x-a+1>=-4,2x<=2<=5-a,a<=3,所以:-1<=a<=3;
x>=1,f(x)=x-1-(x+a)=-a-1>=-4,a<=3,所以:-1<=a<=3
综上所述,-1<=a<=3时,f(x)的最小值为-4.