|a+b|=|a-b|的话,说明:a·b=0即a⊥b,故:=π/2而:|a+b|^2=c^2|b|^2,即:|a|^2=(c^2-1)|b|^2(a+b)·(a-b)=|a|^-|b|^2=(c^2-2)|b|^2|a-b|^2=|a+b|^2=|a|^2+|b|^2=c^2|b|^2故:cos=(a+b)·(a-b)/(|a+b|*|a-b|)=(c^2-2)|b|^2/(c^2|b|^2)=(c^2-2)/c^2|=1-2/c^2c≥2,故:c^2≥4,即:0<1/c^2≤1/4即:-1/2≤-2/c^2<0,即:1/2≤1-2/c^2<1∈(0,π/3],即所求夹角的最大值是π/3