已知非零向量ab满足|a-b|=|a+b|=c|b| 则向量a-b✀与a+b的夹角最大值是

c大于等于2
2025-06-22 07:42:02
推荐回答(1个)
回答1:

|a+b|=|a-b|的话,说明:a·b=0
即a⊥b,故:=π/2
而:|a+b|^2=c^2|b|^2,即:|a|^2=(c^2-1)|b|^2
(a+b)·(a-b)=|a|^-|b|^2=(c^2-2)|b|^2
|a-b|^2=|a+b|^2=|a|^2+|b|^2=c^2|b|^2
故:cos=(a+b)·(a-b)/(|a+b|*|a-b|)
=(c^2-2)|b|^2/(c^2|b|^2)=(c^2-2)/c^2|=1-2/c^2
c≥2,故:c^2≥4,即:0<1/c^2≤1/4
即:-1/2≤-2/c^2<0,即:1/2≤1-2/c^2<1
∈(0,π/3],即所求夹角的最大值是π/3