其实结果对任意实数都成立.函数|x|·e^(-x²)是偶函数, 不妨对x ≥ 0证明.f(x) = x·e^(-x²), f'(x) = (1-2x²)e^(-x²).可知当0 ≤ x ≤ 1/√2时f'(x) ≥ 0, f(x)单调递增, f(x) ≤ f(1/√2) = e^(-1/2)/√2.在1/√2 ≤ x时f'(x) ≤ 0, f(x)单调递减, f(x) ≤ f(1/√2) = e^(-1/2)/√2.