a^2=b^2+c^2-2bc cosA
余弦定理是揭示三角形边角关系的重要定理,直接运用它可解决两类问题:
第一类是已知三角形两边及夹角,求第三边;
第二类是已知三个边求角的问题,若对余弦定理加以变形并适当移于其它知识,则使用起来更为方便、灵活。
对于任意三角形,任何一边的平方等于其他两边平方的和减去这两边与它们夹角的余弦的两倍积,若三边为a,b,c 三角为A,B,C ,则满足性质——
a^2 = b^2 + c^2 - 2·b·c·cosA
、 b^2 = a^2 + c^2 - 2·a·c·cosB
c^2 = a^2 + b^2 - 2·a·b·cosC
cosC = (a^2 + b^2 - c^2) / (2·a·b)
cosB = (a^2 + c^2 - b^2) / (2·a·c)
cosA = (c^2 + b^2 - a^2) / (2·b·c)
(物理力学方面的平行四边形定则以及电学方面正弦电路向量分析也会用到)
第一余弦定理(任意三角形射影定理)
设△ABC的三边是a、b、c,它们所对的角分别是A、B、C,则有
a=b·cos C+c·cos B, b=c·cos A+a·cos C, c=a·cos B+b·cos A。
做AD⊥BC.
∠C所对的边为c,∠B所对的边为b,∠A所对的边为a
则有BD=cosB*c,AD=sinB*c,DC=BC-BD=a-cosB*c
根据勾股定理可得:
AC^2=AD^2+DC^2
b^2=(sinB*c)^2+(a-cosB*c)^2
b^2=(sinB*c)^2+a^2-2ac*cosB+(cosB)^2*c^2
b^2=(sinB^2+cosB^2)*c^2-2ac*cosB+a^2
b^2=c^2+a^2-2ac*cosB
(1)已知三角形的三条边长,可求出三个内角
(2)已知三角形的两边及夹角,可求出第三边。
(3)已知三角形两边及其一边对角,可求其它的角和第三条边。(见解三角形公式,推导过程略。)
判定定理一(两根判别法):
若记m(c1,c2)为c的两值为正根的个数,c1为c的表达式中根号前取加号的值,c2为c的表达式中根号前取
减号的值
①若m(c1,c2)=2,则有两解
②若m(c1,c2)=1,则有一解
③若m(c1,c2)=0,则有零解(即无解)。
注意:若c1等于c2且c1或c2大于0,此种情况算到第二种情况,即一解。
判定定理二(角边判别法):
一当a>bsinA时
①当b>a且cosA>0(即A为锐角)时,则有两解
②当b>a且cosA<=0(即A为直角或钝角)时,则有零解(即无解)
③当b=a且cosA>0(即A为锐角)时,则有一解
④当b=a且cosA<=0(即A为直角或钝角)时,则有零解(即无解)
⑤当b 二当a=bsinA时
①当cosA>0(即A为锐角)时,则有一解
②当cosA<=0(即A为直角或钝角)时,则有零解(即无解)
三当a