a(n)=a+(n-1)d,
d>0时,a(n)单调增,
d<0时,a(n)单调减.
s(n)=na+n(n-1)d/2=n[a+(n-1)d/2].
a(n+1)=s(n+1)-s(n)=a+nd.
0>s(9)=9[a+4d], 00>a+4d, 0< a+9d/2,
d/2 > a+4d+d/2 = a+9d/2 > 0.
d>0.a(n)单调增.
-9d/2 < a < -4d < 0.
a(5)=a+4d<0,
a(6)=a+5d>a+9d/2>0.
a(1)n>=6时,a(n)>=a(6)>0.
n<5时,0>a(n+1)=s(n+1)-s(n), s(n+1)n>=6时,0s(n). n>=6时, s(n)>=s(6).
s(6)-s(5)=a(6)>0, s(6)>s(5).
因此,总有,
n不为5时, s(n)>s(5).
n=5时,s(n)取最小值.