解:(3n+1)(3n-1)-(n+5)(n-5)=9n^2-1-n^2+25=8n^2+24,=8(n^2+3),因为n为正整数,所以n^2+3必为正整数,则8(n^2+3)必为8的倍数,即可被8整除,即(3n+1)(3n-1)-(n+5)(n-5)能被8整除。