计算二重积分∫∫(2x+y)dxdy其中D由y=x,y=2x,y=2围成。解:原式=【0,2】∫dy【y/2,y】∫(2x+y)dx=【0,2】∫dy(x²+yx)∣【y/2,y】=【0,2】∫(y²+y²-y²/4-y²/2)dy=【0,2】(5/4)∫y²dy=(5/4)(y³/3)∣【0,2】=10/3.