已知,如图,在△ABC中,AB=AC,点D,E分别在BC,AC上,且AD=AE求证:∠BAD=2∠CDE

亲们 帮帮忙呗、
2025-06-23 06:43:09
推荐回答(1个)
回答1:

证明:AB=AC,则:∠B=∠C.(等边对等角);
同理:AD=AE,则∠ADE=∠AED.
∵∠ADC=∠B+∠BAD;
即:∠ADE+∠CDE=∠B+∠BAD.
∴∠AED+∠CDE=∠C+∠BAD.
∴(∠CDE+∠C)+∠CDE=∠C+∠BAD.
则:2∠CDE+∠C=∠C+∠BAD.
故:∠BAD=2∠CDE.