设f(x)是R上的函数,则f(x)+f(-x)是偶函数,f(x)-f(-x)是奇函数,
因为f(x)+f(-x)=f(-x)+f(-(-x)),f(x)-f(-x)=-(f(-x)-f(-(-x)))
从而(f(x)+f(-x))/2是偶函数,(f(x)-f(-x))/2是奇函数。
又f(x)=(f(x)+f(-x))/2+(f(x)-f(-x))/2,
即f(x)可以表示为一个奇函数和一个偶函数的和。
设f(x)=g(x)+h(x),其中g(x)为奇函数,h(x)为偶函数
则f(-x)=g(-x)+h(-x)=-g(x)+h(x)
于是由以上两式得g(x)=(f(x)-f(-x))/2,h(x)=(f(x)+f(-x))/2
从而证明了这种表示是唯一的。
反证。