可以用截面法解决。
空间区域可表示为{(x,y,z)|x^2/a^2+y^2/b^2<=1-z^2/c^2,-c<=z<=c}
作截面D是竖坐标为z的平面截空间区域所得到的平面闭区域
则∫∫∫z^2dxdydz=∫[-c,c]z^2dz∫∫[D]dxdy
=πab∫[-c,c](1-z^2/c^2)z^2dz
=(4πabc^3)/15
直角坐标系法
适用于被积区域Ω不含圆形的区域,且要注意积分表达式的转换和积分上下限的表示方法
(1)先一后二法投影法,先计算竖直方向上的一竖条积分,再计算底面的积分。
①区域条件:对积分区域Ω无限制;
②函数条件:对f(x,y,z)无限制。
(2)先二后一法(截面法):先计算底面积分,再计算竖直方向上的积分。