1、设c点的坐标为(x,-2x),c点到A,B两点的距离相等,所以(x-2)^2+(-2x-1)^2=x^2+(-2x+3)^2得x=1/3,y=-2/3,半径为,方程为(x-1/3)^2+(y+2/3)^2=50/9
2设C点到直线L的距离为d, d^2+(√2/2)^2=50/9,d=
d=|1/3+2/3+m|/√2=
m=1+/3或1-
/3
当m=1+/3时直线L与圆c不相交
所以m=1-/3
设圆心O(x,-2x) OA=OB=r
OA=√[(x-2)²+(-2x-1)²]
OB=√[x²+(-2x+3)²]
√[(x-2)²+(-2x-1)²]=√[x²+(-2x+3)²]
(x-2)²+(-2x-1)²=x²+(-2x+3)²
解得 x=1/3
O(1/3,-2/3) r=OA=5√2/3
圆C(x-1/3)²+(y+2/3)²=(5√2/3)²
2.d=|1/3+m+2/3|/√2=|1+m|/√2
r=5√2/3
(MN/2)²1=1/2=r²-d²=50/9-(1+m)²/2
m=±√91/3-1
w