1/1×3+1/3×5+1/5×7+……+1/2009×2011
.=2×(1/1×3+1/3×5+1/5×7+……+1/2009×2011)×1/2
=(2/1*3+2/3*5+2/5*7+2/7*9+.......+2/2009*2011)×1/2
=1/2×(1-1/3+1/3-1/5+……+1/2009-1/2011)×1/2
=(1-1/2011)×1/2
=2010/2011×1/2
=1005/2011
1/1×3+1/3×5+1/5×7+……+1/2009×2011
=1/2×(1-1/3+1/3-1/5+……+1/2009-1/2011)
=1/2×(1-1/2011)
=1/2×2010/2011
=1005/2011
1/n(n+2)=1/2[1/n-1/(n+2)]
1/(2n-1)(2n+1)=1/2*[(2n+1)-(2n-1)]/(2n-1)(2n+1)
=1/2*[(2n+1)/(2n-1)(2n+1)-(2n-1)/(2n-1)(2n+1)]
=1/2*[1/(2n-1)-1/(2n+1)]