已知,xyz=0,求x⼀(xy+x+1)+y⼀(yz+y+1)+z⼀(xz+z+1)值?

2025-05-18 09:59:30
推荐回答(2个)
回答1:

同学,xyz=1吧???
这样的话,
原式=x/(xy+x+xyz)+y/(yz+y+xyz)+z/(xz+z+xyz)
=1/(y+1+yz)+1/(z+1+xz)+1/(x+1+xy)
=xyz/(y+xyz+yz)+1/(z+1+xz)+1/(x+1+xy)
=xz/(1+xz+z)+1/(z+1+xz)+1/(x+1+xy)
=(xz+1)/(z+1+xz)+1/(x+1+xy)
=(xz+xyz)/(z+xyz+xz)+1/(x+1+xy)
=(x+xy)/(1+xy+x)+1/(x+1+xy)
=1

回答2:

xyz=0?