一、a+b/b=a/b+b/b=2/3+1=5/3
二、分子分母同时乘以x,得(x2+1)/(x2-1)=4/2=2(x2为x平方)
三、题目写错了(分母有s),不过分子分母同时乘以1/y2可以算出结果(y2为y 的平方)
四、分子分母同时乘以1/xy可得(2/y-3+2/x)/(1/y+2+1/x)=(2(1/y+1/x)-3)/((1/y+1/x)+2)=(2*5-3)/(5-+2)=1
五、x2+3x+1=0方程两边同时除以x可得x+3+1/x=0 可得x+1/x=-3两边同时平方可得x2+2+1/x2=9
得x2+1/x2=9-2=7(x2为x的平方)
已知a/b=2/3,得 a+b/b=5/3
已知x²=3,得
式1) x/(x-1/x)+1/8=x/[(x²-1)/x]+1/8=x²/(x²-1)+1/8=3/(3-1)+1/8=3/2+1/8=13/8
式2) (x²+1)/(x²-1)=(3+1)/(3-1)=4/2=2
已知x/y=3,得
式1) (x²+2xy-3y²)/(x²-2xy+y²)
=[(x+3y)(x-y)]/[(x-y)²]
=(x+3y)/(x-y)
=[(x/y+3]/[(x/y)-1]
=(3-3)/(3-1)
=0/2
=0
式2) (x²+2xy-3y²)/(x²-xy+y²)
=[(x²/y²)+(2xy/y²)-(3y²/y²)]/[(x²/y²)-(xy/y²)+(y²/y²)]
=(9+6-3)/(9-3+1)
=12/7
已知1/x+1/y=5,得
(2x-3xy+2y)/(x+2xy+y)
=[(2x/xy)-(3xy/xy)+(2y/xy)]/[(x/xy)+(2xy/xy)+(y/xy)]
=[(2/y)-3+(2/x)]/[(1/y)+2+(1/x)]
=[2*(1/y+1/x)-3]/[(1/x+1/y)+2]
=(2*5-3)/(5+2)
=7/7
=1
已知x²+3x+1=0,得
x²+3x+1=0
=> x²/x+3x/x+1/x=0
=> x+1/x=-3
x²+1/x²
=(x²+2+1/x²)-2
=(x+1/x)²-2
=(-3)²-2
=7
1、(a+b)/b=1+a/b=1+2/3=5/3
2、原式=(x^2+1)/(x^2-1)=4/2=2
3、将x=3y代入式子,可得结果12/7
4、先将后面的式子分子分母同除以y,再将1/y=5-1/x代入化简过的式子可得结果为1
5、先将第一个式子除以x,可得x+1/x=-3,后面的式子可以化成(x+1/x)^2-2=3^2-2=7