(2014?贵阳模拟)如图,AC是⊙O的直径,点B,D在⊙O上,点E在⊙O外,∠EAB=∠D=30°.(1)∠C的度数为_

2025-05-13 18:29:01
推荐回答(2个)
回答1:

http://www.7wenta.com/topic/C50E43DC56DF904172E26BD0BFEAEFDF.html
(1)直接根据圆周角定理得到∠C=∠D=30°;
(2)先根据圆周角定理由AC是⊙O的直径得∠ABC=90°,则∠BAC=60°,所以∠EAC=∠EAB+∠BAC=90°,于是可根据切线的判定定理得到AE是⊙O的切线;
(3)连结OB,先判断△OAB为等边三角形,则OA=3,∠AOB=60°,所以∠BOC=120°,然后利用图中阴影部分的面积=S△AOB+S扇形BOC和扇形的面积公式、等边三角形的面积公式计算即可.
(1)解:∠C=∠D=30°;
故答案为30°;
(2)证明:∵AC是⊙O的直径,
∴∠ABC=90°,
∴∠BAC=60°,
而∠EAB=30°,
∴∠EAC=∠EAB+∠BAC=90°,
∴CA⊥AE,
∴AE是⊙O的切线;
(3)解:连结OB,如图,
∵∠BAC=60°,AB=3,
∴△OAB为等边三角形,
∴OA=3,∠AOB=60°,
∴∠BOC=120°,
∴图中阴影部分的面积=S△AOB+S扇形BOC
=4分之根号3×3²+=4分之9根号3+3π

回答2:

(1)解:∠C=∠D=30°;
故答案为30°;
(2)证明:∵AC是⊙O的直径,
∴∠ABC=90°,
∴∠BAC=60°,
而∠EAB=30°,
∴∠EAC=∠EAB+∠BAC=90°,
∴CA⊥AE,
∴AE是⊙O的切线;
(3)解:连结OB,如图,
∵∠BAC=60°,AB=3,
∴△OAB为等边三角形,
∴OA=3,∠AOB=60°,
∴∠BOC=120°,
∴图中阴影部分的面积=S△AOB+S扇形BOC
=

3
4
×32+
120?π?32
360

=
9
3
4
+3π.