第一个问题:
令y=-(4/3)x+4中的x=0,得:y=4,∴点B的坐标是(0,4)。
令y=-(4/3)x+4中的y=0,得:x=3,∴点A的坐标是(3,0)。
∵A′是由A绕O旋转得到的,∴OA=OA′,∴A′的坐标是(0,-3)。
∵B′是由B绕O旋转得到的,∴OB=OB′,∴B′的坐标是(4,0)。
∴A′B′的解析式是:(y-0)/(x-4)=(-3-0)/(0-4)=3/4,即:y=(3/4)x-3。
第二个问题:
联立:y=-(4/3)x+4、y=(3/4)x-3,容易得到:x=12/7。y=-12/7
即点C的横坐标是12/7。
∴△A′BC的面积=(1/2)A′B×(12/7)=(1/2)×(4+3)×(12/7)=6