设F(x)=f(x)-f(x+a)
F(0)=f(0)-f(a)
F(a)=f(a)-f(2a)
F(0)* F(a)<0
所以 由介值定理,存在F(ξ)=f(ξ)- f(ξ+a)=0
所以,f(ξ)=f(ξ+a)
不懂追问
∵f(x)连续且不单调,∴存在f(p)为函数的极值点
过极值点作直线y=z(z介于f(p)与0之间)假设截取f(x)图像上两点(x,f(x)),(x+L,f(x)),其中L为截取线段长度
∵0<=x<=p
构造长度函数L(x),则0<=L(x)<=2a且连续
于是存在m∈[0,p],L(m)=a 此时两点的横坐标为m,m+a
又0<=m,m+a<=2a
∴0<=m<=a
f(m)=f(m+a)