如图,在△ABC中,∠ABC、∠ACB的平分线交于点O.(1)若∠ABC=40°,∠ACB=50°,则∠BOC=______(2)若

2025-05-23 15:15:08
推荐回答(1个)
回答1:

(1)∵∠ABC=40°,∠ACB=50°,在△ABC中,∠ABC、∠ACB的平分线交于点O.
∴∠OBC=
1
2
∠ABC=20°,∠OCB=
1
2
∠ACB=25°,
∴∠BOC=180°-∠OBC-∠OCB=180°-20°-25°=135°,
故答案是:135°;

(2)在△ABC中,∠ABC、∠ACB的平分线交于点O.
∴∠OBC=
1
2
∠ABC,∠OCB=
1
2
∠ACB,
∴∠OBC+∠OCB=
1
2
(∠ABC+∠ACB)=50°,
∴∠BOC=180°-
1
2
(∠ABC+∠ACB)=180°-50°=130°,
故答案是130°.

(3)在△ABC中,∠ABC、∠ACB的平分线交于点O.
∴∠OBC=
1
2
∠ABC,∠OCB=
1
2
∠ACB,
∴∠OBC+∠OCB=
1
2
(∠ABC+∠ACB)=55°,
∴∠BOC=180°-
1
2
(∠ABC+∠ACB)=180°-55°=125°,
故答案是125°;

(4)∵∠BOC=140°,
∴∠OBC+OCB=40°,
∵∠OBC=
1
2
∠ABC,∠OCB=
1
2
∠ACB,
∴∠ABC+∠ACB=2(∠OBC+OCB)=80°,
∴∠A=100°,
故答案是:100°;

(5)设∠BOC=α,
∴∠OBC+OCB=180°-α,
∵∠OBC=
1
2
∠ABC,∠OCB=
1
2
∠ACB,
∴∠ABC+∠ACB=2(∠OBC+OCB)=2(180°-α)=360°-2α,
∴∠A=180°-(ABC+∠ACB)=180°-(360°-2α)=2α-180°,
故∠BOC与∠A之间的数量关系是:∠A=2∠BOC-180°.